TBX11K Tuberculosis Classification and Detection Challenge
Yun Liu*, Yu-Huan Wu*, Yunfeng Ban, Huifang Wang, Ming-Ming Cheng

TBX11K.zip 3.31GB
Type: Dataset
Tags:

Bibtex:
@article{,
title= {TBX11K Tuberculosis Classification and Detection Challenge},
keywords= {},
author= {Yun Liu*, Yu-Huan Wu*, Yunfeng Ban, Huifang Wang, Ming-Ming Cheng},
abstract= {As a serious infectious disease, tuberculosis (TB) is one of the major threats to human health worldwide, leading to millions of death every year. Although early diagnosis and treatment can greatly improve the chances of survival, it remains a major challenge, especially in developing countries. Computer-aided tuberculosis diagnosis (CTD) is a promising choice for TB diagnosis due to the great successes of deep learning. However, when it comes to TB diagnosis, the lack of training data has hampered the progress of CTD. To solve this problem, we establish a large-scale TB dataset, namely Tuberculosis X-ray (TBX11K) dataset. This dataset contains 11200 X-ray images with corresponding bounding box annotations for TB areas, while the existing largest public TB dataset only has 662 X-ray images with corresponding image-level annotations. The proposed dataset enables the training of sophisticated detectors for high-quality CTD.

Rethinking Computer-Aided Tuberculosis Diagnosis, Yun Liu*, Yu-Huan Wu*, Yunfeng Ban, Huifang Wang, Ming-Ming Cheng, IEEE CVPR, 2020.

https://i.imgur.com/js4y8dv.jpg},
terms= {},
license= {https://creativecommons.org/licenses/by/4.0/},
superseded= {},
url= {https://mmcheng.net/tb/}
}


Send Feedback Start
   0.000038
DB Connect
   0.001179
Lookup hash in DB
   0.001313
Get torrent details
   0.000469
Get torrent details, finished
   0.000825
Get authors
   0.000053
Parse bibtex
   0.000330
Write header
   0.000784
get stars
   0.000352
home tab
   0.000400
render right panel
   0.000007
render ads
   0.001073
fetch current hosters
   0.001282
Done