Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
Soe W. Myint and Patricia Gober and Anthony Brazel and Susanne Grossman-Clarke and Qihao Weng

1-s2.0-S0034425711000034-main.pdf 3.47MB
Type: Paper
Tags: Nearest neighbor

Bibtex:
@article{Myint20111145,
title = "Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery ",
journal = "Remote Sensing of Environment ",
volume = "115",
number = "5",
pages = "1145 - 1161",
year = "2011",
note = "",
issn = "0034-4257",
doi = "http://dx.doi.org/10.1016/j.rse.2010.12.017",
url = "http://www.sciencedirect.com/science/article/pii/S0034425711000034",
author = "Soe W. Myint and Patricia Gober and Anthony Brazel and Susanne Grossman-Clarke and Qihao Weng",
keywords = "Urban",
keywords = "High resolution",
keywords = "Object-based classifier",
keywords = "Membership function",
keywords = "Nearest neighbor ",
abstract = "In using traditional digital classification algorithms, a researcher typically encounters serious issues in identifying urban land cover classes employing high resolution data. A normal approach is to use spectral information alone and ignore spatial information and a group of pixels that need to be considered together as an object. We used QuickBird image data over a central region in the city of Phoenix, Arizona to examine if an object-based classifier can accurately identify urban classes. To demonstrate if spectral information alone is practical in urban classification, we used spectra of the selected classes from randomly selected points to examine if they can be effectively discriminated. The overall accuracy based on spectral information alone reached only about 63.33%. We employed five different classification procedures with the object-based paradigm that separates spatially and spectrally similar pixels at different scales. The classifiers to assign land covers to segmented objects used in the study include membership functions and the nearest neighbor classifier. The object-based classifier achieved a high overall accuracy (90.40%), whereas the most commonly used decision rule, namely maximum likelihood classifier, produced a lower overall accuracy (67.60%). This study demonstrates that the object-based classifier is a significantly better approach than the classical per-pixel classifiers. Further, this study reviews application of different parameters for segmentation and classification, combined use of composite and original bands, selection of different scale levels, and choice of classifiers. Strengths and weaknesses of the object-based prototype are presented and we provide suggestions to avoid or minimize uncertainties and limitations associated with the approach. "
}


Send Feedback Start
   0.000004
DB Connect
   0.000410
Lookup hash in DB
   0.000599
Get torrent details
   0.000565
Get torrent details, finished
   0.000543
Get authors
   0.000134
Parse bibtex
   0.000874
Write header
   0.000557
get stars
   0.000348
home tab
   0.000423
render right panel
   0.000006
render ads
   0.000063
fetch current hosters
   0.000600
Done