[Coursera] Machine Learning (University of Washington) (machlearning)
University of Washington

folder machlearning-001 (115 files)
file01_Week_One-_Basic_Concepts_in_Machine_Learning/01_Class_Information.mp4 26.49MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/02_What_Is_Machine_Learning.mp4 40.74MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/03_Applications_of_Machine_Learning.mp4 41.84MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/04_Key_Elements_of_Machine_Learning.mp4 80.28MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/05_Types_of_Learning.mp4 64.32MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/06_Machine_Learning_in_Practice.mp4 48.72MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/07_What_Is_Inductive_Learning.mp4 15.66MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/08_When_Should_You_Use_Inductive_Learning.mp4 29.27MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/09_The_Essence_of_Inductive_Learning.mp4 103.89MB
file01_Week_One-_Basic_Concepts_in_Machine_Learning/10_A_Framework_for_Studying_Inductive_Learning.mp4 99.12MB
file02_Week_Two-_Decision_Tree_Induction/01_Decision_Trees.mp4 43.30MB
file02_Week_Two-_Decision_Tree_Induction/02_What_Can_a_Decision_Tree_Represent.mp4 28.56MB
file02_Week_Two-_Decision_Tree_Induction/03_Growing_a_Decision_Tree.mp4 28.45MB
file02_Week_Two-_Decision_Tree_Induction/04_Accuracy_and_Information_Gain.mp4 90.38MB
file02_Week_Two-_Decision_Tree_Induction/05_Learning_with_Non-Boolean_Features.mp4 26.59MB
file02_Week_Two-_Decision_Tree_Induction/06_The_Parity_Problem.mp4 20.07MB
file02_Week_Two-_Decision_Tree_Induction/07_Learning_with_Many-Valued_Attributes.mp4 23.62MB
file02_Week_Two-_Decision_Tree_Induction/08_Learning_with_Missing_Values.mp4 39.70MB
file02_Week_Two-_Decision_Tree_Induction/09_The_Overfitting_Problem.mp4 50.68MB
file02_Week_Two-_Decision_Tree_Induction/10_Decision_Tree_Pruning.mp4 83.37MB
file02_Week_Two-_Decision_Tree_Induction/11_Post-Pruning_Trees_to_Rules.mp4 98.99MB
file02_Week_Two-_Decision_Tree_Induction/12_Scaling_Up_Decision_Tree_Learning.mp4 29.30MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/01_Rules_vs._Decision_Trees.mp4 70.48MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/02_Learning_a_Set_of_Rules.mp4 52.86MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/03_Estimating_Probabilities_from_Small_Samples.mp4 38.22MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/04_Learning_Rules_for_Multiple_Classes.mp4 23.80MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/05_First-Order_Rules.mp4 47.31MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/06_Learning_First-Order_Rules_Using_FOIL.mp4 102.01MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/07_Induction_as_Inverted_Deduction.mp4 78.17MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/08_Inverting_Propositional_Resolution.mp4 67.00MB
file03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/09_Inverting_First-Order_Resolution.mp4 90.90MB
file04_Week_Four-_Instance-Based_Learning/01_The_K-Nearest_Neighbor_Algorithm.mp4 72.58MB
file04_Week_Four-_Instance-Based_Learning/02_Theoretical_Guarantees_on_k-NN.mp4 45.34MB
file04_Week_Four-_Instance-Based_Learning/03_Distance-Weighted_k-NN.mp4 12.63MB
file04_Week_Four-_Instance-Based_Learning/04_The_Curse_of_Dimensionality.mp4 61.50MB
file04_Week_Four-_Instance-Based_Learning/05_Feature_Selection_and_Weighting.mp4 50.11MB
file04_Week_Four-_Instance-Based_Learning/06_Reducing_the_Computational_Cost_of_k-NN.mp4 46.94MB
file04_Week_Four-_Instance-Based_Learning/07_Avoiding_Overfitting_in_k-NN.mp4 27.44MB
file04_Week_Four-_Instance-Based_Learning/08_Locally_Weighted_Regression.mp4 21.00MB
file04_Week_Four-_Instance-Based_Learning/09_Radial_Basis_Function_Networks.mp4 13.99MB
file04_Week_Four-_Instance-Based_Learning/10_Case-Based_Reasoning.mp4 16.82MB
file04_Week_Four-_Instance-Based_Learning/11_Lazy_vs._Eager_Learning.mp4 11.87MB
file04_Week_Four-_Instance-Based_Learning/12_Collaborative_Filtering.mp4 73.96MB
file05_Week_Five-_Statistical_Learning/01_Bayesian_Methods.mp4 21.47MB
file05_Week_Five-_Statistical_Learning/02_Bayes_Theorem_and_MAP_Hypotheses.mp4 107.30MB
file05_Week_Five-_Statistical_Learning/03_Basic_Probability_Formulas.mp4 25.20MB
file05_Week_Five-_Statistical_Learning/04_MAP_Learning.mp4 60.52MB
file05_Week_Five-_Statistical_Learning/05_Learning_a_Real-Valued_Function.mp4 45.66MB
file05_Week_Five-_Statistical_Learning/06_Bayes_Optimal_Classifier_and_Gibbs_Classifier.mp4 42.36MB
Too many files! Click here to view them all.
Type: Course
Tags: Coursera, machlearning

Bibtex:
@article{,
    title = {[Coursera] Machine Learning (University of Washington) (machlearning)},
    author = {University of Washington}
    }

Send Feedback Start
   0.000006
DB Connect
   0.000422
Lookup hash in DB
   0.000905
Get torrent details
   0.000939
Get torrent details, finished
   0.000720
Get authors
   0.000036
Parse bibtex
   0.000248
Write header
   0.000560
get stars
   0.000523
home tab
   0.001800
render right panel
   0.000034
render ads
   0.000085
fetch current hosters
   0.000982
Done