[Coursera] Machine Learning (University of Washington) (machlearning)
University of Washington

Info hash0cdba976d648fbe322133833323491ebf8b34340
Last mirror activity5d,04:32:44 ago
Size5.65GB (5,649,312,721 bytes)
Added2017-03-05 01:25:12
Views2136
Hits7830
ID3628
Typemulti
Downloaded7285 time(s)
Uploaded by gravatar.com icon for user pj
Foldermachlearning-001
Num files115 files
File list [Hide list]
01_Week_One-_Basic_Concepts_in_Machine_Learning/01_Class_Information.mp4 26.49MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/02_What_Is_Machine_Learning.mp4 40.74MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/03_Applications_of_Machine_Learning.mp4 41.84MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/04_Key_Elements_of_Machine_Learning.mp4 80.28MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/05_Types_of_Learning.mp4 64.32MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/06_Machine_Learning_in_Practice.mp4 48.72MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/07_What_Is_Inductive_Learning.mp4 15.66MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/08_When_Should_You_Use_Inductive_Learning.mp4 29.27MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/09_The_Essence_of_Inductive_Learning.mp4 103.89MB
01_Week_One-_Basic_Concepts_in_Machine_Learning/10_A_Framework_for_Studying_Inductive_Learning.mp4 99.12MB
02_Week_Two-_Decision_Tree_Induction/01_Decision_Trees.mp4 43.30MB
02_Week_Two-_Decision_Tree_Induction/02_What_Can_a_Decision_Tree_Represent.mp4 28.56MB
02_Week_Two-_Decision_Tree_Induction/03_Growing_a_Decision_Tree.mp4 28.45MB
02_Week_Two-_Decision_Tree_Induction/04_Accuracy_and_Information_Gain.mp4 90.38MB
02_Week_Two-_Decision_Tree_Induction/05_Learning_with_Non-Boolean_Features.mp4 26.59MB
02_Week_Two-_Decision_Tree_Induction/06_The_Parity_Problem.mp4 20.07MB
02_Week_Two-_Decision_Tree_Induction/07_Learning_with_Many-Valued_Attributes.mp4 23.62MB
02_Week_Two-_Decision_Tree_Induction/08_Learning_with_Missing_Values.mp4 39.70MB
02_Week_Two-_Decision_Tree_Induction/09_The_Overfitting_Problem.mp4 50.68MB
02_Week_Two-_Decision_Tree_Induction/10_Decision_Tree_Pruning.mp4 83.37MB
02_Week_Two-_Decision_Tree_Induction/11_Post-Pruning_Trees_to_Rules.mp4 98.99MB
02_Week_Two-_Decision_Tree_Induction/12_Scaling_Up_Decision_Tree_Learning.mp4 29.30MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/01_Rules_vs._Decision_Trees.mp4 70.48MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/02_Learning_a_Set_of_Rules.mp4 52.86MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/03_Estimating_Probabilities_from_Small_Samples.mp4 38.22MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/04_Learning_Rules_for_Multiple_Classes.mp4 23.80MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/05_First-Order_Rules.mp4 47.31MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/06_Learning_First-Order_Rules_Using_FOIL.mp4 102.01MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/07_Induction_as_Inverted_Deduction.mp4 78.17MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/08_Inverting_Propositional_Resolution.mp4 67.00MB
03_Week_Three-_Learning_Sets_of_Rules_and_Logic_Programs/09_Inverting_First-Order_Resolution.mp4 90.90MB
04_Week_Four-_Instance-Based_Learning/01_The_K-Nearest_Neighbor_Algorithm.mp4 72.58MB
04_Week_Four-_Instance-Based_Learning/02_Theoretical_Guarantees_on_k-NN.mp4 45.34MB
04_Week_Four-_Instance-Based_Learning/03_Distance-Weighted_k-NN.mp4 12.63MB
04_Week_Four-_Instance-Based_Learning/04_The_Curse_of_Dimensionality.mp4 61.50MB
04_Week_Four-_Instance-Based_Learning/05_Feature_Selection_and_Weighting.mp4 50.11MB
04_Week_Four-_Instance-Based_Learning/06_Reducing_the_Computational_Cost_of_k-NN.mp4 46.94MB
04_Week_Four-_Instance-Based_Learning/07_Avoiding_Overfitting_in_k-NN.mp4 27.44MB
04_Week_Four-_Instance-Based_Learning/08_Locally_Weighted_Regression.mp4 21.00MB
04_Week_Four-_Instance-Based_Learning/09_Radial_Basis_Function_Networks.mp4 13.99MB
04_Week_Four-_Instance-Based_Learning/10_Case-Based_Reasoning.mp4 16.82MB
04_Week_Four-_Instance-Based_Learning/11_Lazy_vs._Eager_Learning.mp4 11.87MB
04_Week_Four-_Instance-Based_Learning/12_Collaborative_Filtering.mp4 73.96MB
05_Week_Five-_Statistical_Learning/01_Bayesian_Methods.mp4 21.47MB
05_Week_Five-_Statistical_Learning/02_Bayes_Theorem_and_MAP_Hypotheses.mp4 107.30MB
05_Week_Five-_Statistical_Learning/03_Basic_Probability_Formulas.mp4 25.20MB
05_Week_Five-_Statistical_Learning/04_MAP_Learning.mp4 60.52MB
05_Week_Five-_Statistical_Learning/05_Learning_a_Real-Valued_Function.mp4 45.66MB
05_Week_Five-_Statistical_Learning/06_Bayes_Optimal_Classifier_and_Gibbs_Classifier.mp4 42.36MB
05_Week_Five-_Statistical_Learning/07_The_Naive_Bayes_Classifier.mp4 107.41MB
05_Week_Five-_Statistical_Learning/08_Text_Classification.mp4 45.07MB
05_Week_Five-_Statistical_Learning/09_Bayesian_Networks.mp4 97.59MB
05_Week_Five-_Statistical_Learning/10_Inference_in_Bayesian_Networks.mp4 16.18MB
05_Week_Five-_Statistical_Learning/11_Bayesian_Network_Review.mp4 17.25MB
05_Week_Five-_Statistical_Learning/12_Learning_Bayesian_Networks.mp4 16.13MB
05_Week_Five-_Statistical_Learning/13_The_EM_Algorithm.mp4 56.54MB
05_Week_Five-_Statistical_Learning/14_Example_of_EM.mp4 57.94MB
05_Week_Five-_Statistical_Learning/15_Learning_Bayesian_Network_Structure.mp4 74.96MB
05_Week_Five-_Statistical_Learning/16_The_Structural_EM_Algorithm.mp4 300.27MB
06_Week_Six-_Neural_Networks/01_Reverse-Engineering_the_Brain.mp4 55.26MB
06_Week_Six-_Neural_Networks/02_Neural_Network_Driving_a_Car.mp4 48.93MB
06_Week_Six-_Neural_Networks/03_How_Neurons_Work.mp4 36.20MB
06_Week_Six-_Neural_Networks/04_The_Perceptron.mp4 53.41MB
06_Week_Six-_Neural_Networks/05_Perceptron_Training.mp4 50.97MB
06_Week_Six-_Neural_Networks/06_Gradient_Descent.mp4 38.55MB
06_Week_Six-_Neural_Networks/07_Gradient_Descent_Continued.mp4 39.22MB
06_Week_Six-_Neural_Networks/08_Gradient_Descent_vs._Perceptron_Training.mp4 25.92MB
06_Week_Six-_Neural_Networks/09_Stochastic_Gradient_Descent.mp4 19.08MB
06_Week_Six-_Neural_Networks/10_Multilayer_Perceptrons.mp4 64.83MB
06_Week_Six-_Neural_Networks/11_Backpropagation.mp4 85.93MB
06_Week_Six-_Neural_Networks/12_Issues_in_Backpropagation.mp4 105.54MB
06_Week_Six-_Neural_Networks/13_Learning_Hidden_Layer_Representations.mp4 59.93MB
06_Week_Six-_Neural_Networks/14_Expressiveness_of_Neural_Networks.mp4 30.87MB
06_Week_Six-_Neural_Networks/15_Avoiding_Overfitting_in_Neural_Networks.mp4 39.67MB
07_Week_Seven-_Model_Ensembles/01_Model_Ensembles.mp4 14.00MB
07_Week_Seven-_Model_Ensembles/02_Bagging.mp4 39.85MB
07_Week_Seven-_Model_Ensembles/03_Boosting-_The_Basics.mp4 35.88MB
07_Week_Seven-_Model_Ensembles/04_Boosting-_The_Details.mp4 51.78MB
07_Week_Seven-_Model_Ensembles/05_Error-Correcting_Output_Coding.mp4 41.27MB
07_Week_Seven-_Model_Ensembles/06_Stacking.mp4 44.32MB
08_Week_Eight-_Learning_Theory/01_Learning_Theory.mp4 13.42MB
08_Week_Eight-_Learning_Theory/02_No_Free_Lunch_Theorems.mp4 62.80MB
08_Week_Eight-_Learning_Theory/03_Practical_Consequences_of_No_Free_Lunch.mp4 36.67MB
08_Week_Eight-_Learning_Theory/04_Bias_and_Variance.mp4 80.92MB
08_Week_Eight-_Learning_Theory/05_Bias-Variance_Decomposition_for_Squared_Loss.mp4 16.62MB
08_Week_Eight-_Learning_Theory/06_General_Bias-Variance_Decomposition.mp4 46.04MB
08_Week_Eight-_Learning_Theory/07_Bias-Variance_Decomposition_for_Zero-One_Loss.mp4 26.84MB
08_Week_Eight-_Learning_Theory/08_Bias_and_Variance_for_Other_Loss_Functions.mp4 16.60MB
08_Week_Eight-_Learning_Theory/09_PAC_Learning.mp4 41.98MB
08_Week_Eight-_Learning_Theory/10_How_Many_Examples_Are_Enough.mp4 57.66MB
08_Week_Eight-_Learning_Theory/11_Examples_and_Definition_of_PAC_Learning.mp4 18.18MB
08_Week_Eight-_Learning_Theory/12_Agnostic_Learning.mp4 47.99MB
08_Week_Eight-_Learning_Theory/13_VC_Dimension.mp4 41.91MB
08_Week_Eight-_Learning_Theory/14_VC_Dimension_of_Hyperplanes.mp4 41.18MB
08_Week_Eight-_Learning_Theory/15_Sample_Complexity_from_VC_Dimension.mp4 8.09MB
09_Week_Nine-_Support_Vector_Machines/01_Support_Vector_Machines.mp4 32.32MB
09_Week_Nine-_Support_Vector_Machines/02_Perceptrons_as_Instance-Based_Learning.mp4 54.29MB
09_Week_Nine-_Support_Vector_Machines/03_Kernels.mp4 70.78MB
09_Week_Nine-_Support_Vector_Machines/04_Learning_SVMs.mp4 67.90MB
09_Week_Nine-_Support_Vector_Machines/05_Constrained_Optimization.mp4 78.89MB
09_Week_Nine-_Support_Vector_Machines/06_Optimization_with_Inequality_Constraints.mp4 55.43MB
09_Week_Nine-_Support_Vector_Machines/07_The_SMO_Algorithm.mp4 25.36MB
09_Week_Nine-_Support_Vector_Machines/08_Handling_Noisy_Data_in_SVMs.mp4 57.78MB
09_Week_Nine-_Support_Vector_Machines/09_Generalization_Bounds_for_SVMs.mp4 43.28MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/01_Clustering_and_Dimensionality_Reduction.mp4 35.68MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/02_K-Means_Clustering.mp4 46.52MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/03_Mixture_Models.mp4 55.59MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/04_Mixtures_of_Gaussians.mp4 21.76MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/05_EM_Algorithm_for_Mixtures_of_Gaussians.mp4 45.36MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/06_Mixture_Models_vs._K-Means_vs._Bayesian_Networks.mp4 29.32MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/07_Hierarchical_Clustering.mp4 20.62MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/08_Principal_Components_Analysis.mp4 61.08MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/09_Multidimensional_Scaling.mp4 29.73MB
10_Week_Ten-_Clustering_and_Dimensionality_Reduction/10_Nonlinear_Dimensionality_Reduction.mp4 47.82MB
entered_login.html 1.37MB
Mirrors17 complete, 0 downloading = 17 mirror(s) total [Log in to see full list]


Send Feedback Start
   0.000004
DB Connect
   0.000447
Lookup hash in DB
   0.001106
Get torrent details
   0.000372
Get torrent details, finished
   0.001148
Get authors
   0.000039
Parse bibtex
   0.000119
Write header
   0.000634
get stars
   0.000339
target tab
   0.000034
Request peers
   0.001407
Write table
   0.002168
geoloc peers
   0.030073
render right panel
   0.000050
render ads
   0.000388
fetch current hosters
   0.001046
Done