Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf 706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}

Send Feedback Start
   0.000002
DB Connect
   0.000223
Lookup hash in DB
   0.002959
Get torrent details
   0.001273
Get torrent details, finished
   0.000591
Get authors
   0.000002
Select authors
   0.000460
Parse bibtex
   0.000063
Write header
   0.000420
get stars
   0.000240
home tab
   0.000227
render right panel
   0.000007
render ads
   0.000031
fetch current hosters
   0.001176
Done