Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf 706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}

Send Feedback Start
   0.000005
DB Connect
   0.000470
Lookup hash in DB
   0.000615
Get torrent details
   0.000604
Get torrent details, finished
   0.000582
Get authors
   0.000005
Select authors
   0.000425
Parse bibtex
   0.000102
Write header
   0.000457
get stars
   0.000371
home tab
   0.000361
render right panel
   0.000007
render ads
   0.000042
fetch current hosters
   0.000678
Done