Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf 706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}

Send Feedback Start
   0.000010
DB Connect
   0.001046
Lookup hash in DB
   0.001215
Get torrent details
   0.000409
Get torrent details, finished
   0.000703
Get authors
   0.000001
Select authors
   0.000504
Parse bibtex
   0.000051
Write header
   0.000492
get stars
   0.000334
home tab
   0.000315
render right panel
   0.000009
render ads
   0.001327
fetch current hosters
   0.001124
Done