Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf 706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}

Send Feedback Start
   0.000003
DB Connect
   0.000388
Lookup hash in DB
   0.000539
Get torrent details
   0.000566
Get torrent details, finished
   0.000502
Get authors
   0.000003
Select authors
   0.000436
Parse bibtex
   0.000072
Write header
   0.000426
get stars
   0.000657
home tab
   0.000345
render right panel
   0.000008
render ads
   0.000036
fetch current hosters
   0.000635
Done