Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}

Send Feedback Start
   0.000006
DB Connect
   0.000658
Lookup hash in DB
   0.000889
Get torrent details
   0.000701
Get torrent details, finished
   0.000846
Get authors
   0.000007
Select authors
   0.000553
Parse bibtex
   0.000100
Write header
   0.000568
get stars
   0.000869
home tab
   0.000497
render right panel
   0.000013
render ads
   0.000081
fetch current hosters
   0.000647
Done