Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf 706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}


Send Feedback Start
   0.000012
DB Connect
   0.001139
Lookup hash in DB
   0.007011
Get torrent details
   0.000352
Get torrent details, finished
   0.000920
Get authors
   0.000002
Select authors
   0.000609
Parse bibtex
   0.000069
Write header
   0.000589
get stars
   0.000357
home tab
   0.000322
render right panel
   0.000013
render ads
   0.001068
fetch current hosters
   0.001030
Done