Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Ming-Jie Zhao and Adam Pocock and Gavin Brown and Mikel Lujn

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection.pdf 706.10kB
Type: Paper
Tags:

Bibtex:
@article{13:2,author={Gavin Brown and Adam Pocock and Ming-Jie Zhao and Mikel Lujn}, Title={Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},journal={Journal of Machine Learning Research},volume={13}, url={http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf}}


Send Feedback Start
   0.000009
DB Connect
   0.000871
Lookup hash in DB
   0.000783
Get torrent details
   0.000251
Get torrent details, finished
   0.000453
Get authors
   0.000002
Select authors
   0.000323
Parse bibtex
   0.000050
Write header
   0.000398
get stars
   0.000173
home tab
   0.000190
render right panel
   0.000009
render ads
   0.000677
fetch current hosters
   0.000593
Done