UT Zappos50K (Version 2.1)
Aron Yu and Kristen Grauman

folder utzap50k (6 files)
fileut-zap50k-lexi.zip 213.85MB
fileut-zap50k-images-square.zip 144.23MB
fileut-zap50k-images.zip 305.32MB
filereadme.txt 7.70kB
fileut-zap50k-data.zip 8.56MB
fileut-zap50k-feats.zip 215.05MB
Type: Dataset
Tags:
Abstract:

UT Zappos50K (UT-Zap50K) is a large shoe dataset consisting of 50,025 catalog images collected from Zappos.com. The images are divided into 4 major categories — shoes, sandals, slippers, and boots — followed by functional types and individual brands. The shoes are centered on a white background and pictured in the same orientation for convenient analysis.

This dataset is created in the context of an online shopping task, where users pay special attentions to fine-grained visual differences. For instance, it is more likely that a shopper is deciding between two pairs of similar men's running shoes instead of between a woman's high heel and a man's slipper. GIST and LAB color features are provided. In addition, each image has 8 associated meta-data (gender, materials, etc.) labels that are used to filter the shoes on Zappos.com.

Citation

This dataset is for academic, non-commercial use only. If you use this dataset in a publication, please cite the following papers:

A. Yu and K. Grauman. "Fine-Grained Visual Comparisons with Local Learning". In CVPR, 2014. [paper] [supp] [poster] [bibtex] [project page]

@InProceedings{finegrained, author = {A. Yu and K. Grauman}, title = {Fine-Grained Visual Comparisons with Local Learning}, booktitle = {Computer Vision and Pattern Recognition (CVPR)}, month = {Jun}, year = {2014} }

A. Yu and K. Grauman. "Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images". In ICCV, 2017. [paper] [supp] [poster] [bibtex] [project page]



URL: http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
License: No license specified, the work may be protected by copyright.

Bibtex:
@article{,
title= {UT Zappos50K (Version 2.1)},
keywords= {},
author= {Aron Yu and Kristen Grauman},
abstract= {UT Zappos50K (UT-Zap50K) is a large shoe dataset consisting of 50,025 catalog images collected from Zappos.com. The images are divided into 4 major categories — shoes, sandals, slippers, and boots — followed by functional types and individual brands. The shoes are centered on a white background and pictured in the same orientation for convenient analysis.

This dataset is created in the context of an online shopping task, where users pay special attentions to fine-grained visual differences. For instance, it is more likely that a shopper is deciding between two pairs of similar men's running shoes instead of between a woman's high heel and a man's slipper. GIST and LAB color features are provided. In addition, each image has 8 associated meta-data (gender, materials, etc.) labels that are used to filter the shoes on Zappos.com.

https://i.imgur.com/RoVL6qr.jpg

# Citation

This dataset is for academic, non-commercial use only. If you use this dataset in a publication, please cite the following papers:

A. Yu and K. Grauman. "Fine-Grained Visual Comparisons with Local Learning". In CVPR, 2014.
[paper] [supp] [poster] [bibtex] [project page]

@InProceedings{finegrained,
  author = {A. Yu and K. Grauman},
  title = {Fine-Grained Visual Comparisons with Local Learning},
  booktitle = {Computer Vision and Pattern Recognition (CVPR)},
  month = {Jun},
  year = {2014}
}

A. Yu and K. Grauman. "Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images". In ICCV, 2017.
[paper] [supp] [poster] [bibtex] [project page]},
terms= {},
license= {},
superseded= {},
url= {http://vision.cs.utexas.edu/projects/finegrained/utzap50k/}
}

Hosted by users:

Send Feedback Start
   0.000005
DB Connect
   0.000424
Lookup hash in DB
   0.008433
Get torrent details
   0.006721
Get torrent details, finished
   0.005097
Get authors
   0.000111
Parse bibtex
   0.000895
Write header
   0.002299
get stars
   0.006367
home tab
   0.013074
render right panel
   0.000044
render ads
   0.000090
fetch current hosters
   0.028000
Done