RELLIS-3D Dataset: Data, Benchmarks and Analysis
Jiang, Peng and Osteen, Philip and Wigness, Maggie and Saripalli, Srikanth

folder RELLIS-3D (96917 files)
file00000/calib.txt 0.26kB
file00000/camera_info.txt 0.05kB
file00000/os1_cloud_node_color_ply/frame000000-1581624652_770.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000001-1581624652_871.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000002-1581624652_971.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000003-1581624653_071.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000004-1581624653_171.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000005-1581624653_271.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000006-1581624653_371.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000007-1581624653_470.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000008-1581624653_570.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000009-1581624653_671.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000010-1581624653_771.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000011-1581624653_871.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000012-1581624653_971.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000013-1581624654_071.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000014-1581624654_171.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000015-1581624654_271.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000016-1581624654_371.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000017-1581624654_471.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000018-1581624654_571.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000019-1581624654_671.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000020-1581624654_771.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000021-1581624654_871.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000022-1581624654_971.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000023-1581624655_071.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000024-1581624655_171.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000025-1581624655_271.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000026-1581624655_371.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000027-1581624655_471.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000028-1581624655_571.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000029-1581624655_671.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000030-1581624655_771.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000031-1581624655_871.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000032-1581624655_971.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000033-1581624656_071.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000034-1581624656_170.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000035-1581624656_270.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000036-1581624656_370.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000037-1581624656_470.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000038-1581624656_570.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000039-1581624656_670.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000040-1581624656_770.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000041-1581624656_870.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000042-1581624656_970.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000043-1581624657_071.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000044-1581624657_171.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000045-1581624657_271.ply 4.33MB
file00000/os1_cloud_node_color_ply/frame000046-1581624657_371.ply 4.33MB
Too many files! Click here to view them all.
Type: Dataset
Tags: deep learningsemantic segmentationtraversabilitylaser radarodometrypoint cloudRGB cameraurban environmentsimage segmentationLiDaR point cloudsLiDaR scanspoint cloud dataraw sensor datasemantic segmentation modelssemanticsautonomous navigationbounding boxcamera calibrationclass distributionclass imbalanceconferencesimage annotationimaging datainertial navigationlabel distributionmultimodal datasetnavigation in environmentsobject classificationsemantic informationsemantic understandingstereo camerathree-dimensional displaysunclear boundariesurban scenesurban areasviewing angleautonomic system

Bibtex:
@article{,
title={RELLIS-3D Dataset: Data, Benchmarks and Analysis},
author= {Jiang, Peng and Osteen, Philip and Wigness, Maggie and Saripalli, Srikanth},
booktitle={2021 IEEE international conference on robotics and automation (ICRA)},
pages={1110--1116},
year={2021},
organization={IEEE},
url= {http://www.unmannedlab.org/research/RELLIS-3D},
abstract= {Semantic scene understanding is crucial for robust and safe autonomous navigation, particularly so in off-road environments. Recent deep learning advances for 3D semantic segmentation rely heavily on large sets of training data, however existing autonomy datasets either represent urban environments or lack multimodal off-road data. We fill this gap with RELLIS-3D, a multimodal dataset collected in an off-road environment, which contains annotations for 13,556 LiDAR scans and 6,235 images. The data was collected on the Rellis Campus of Texas A&M University, and presents challenges to existing algorithms related to class imbalance and environmental topography. Additionally, we evaluate the current state of the art deep learning semantic segmentation models on this dataset. Experimental results show that RELLIS-3D presents challenges for algorithms designed for segmentation in urban environments. This novel dataset provides the resources needed by researchers to continue to develop more advanced algorithms and investigate new research directions to enhance autonomous navigation in off-road environments. RELLIS-3D is available at https://github.com/unmannedlab/RELLIS-3D},
keywords= {deep learning, semantic segmentation, traversability, laser radar, odometry, point cloud, RGB camera, urban environments, image segmentation, LiDaR point clouds, LiDaR scans, point cloud data, raw sensor data, semantic segmentation models, semantics, autonomic system, autonomous navigation, bounding box, camera calibration, class distribution, class imbalance, conferences, image annotation, imaging data, inertial navigation, label distribution, multimodal dataset, navigation in environments, object classification, semantic information, semantic understanding, stereo camera, three-dimensional displays, unclear boundaries, urban scenes, urban areas, viewing angle},
terms= {},
license= {CC BY-NC-SA 3.0: https://creativecommons.org/licenses/by-nc-sa/3.0/},
superseded= {}
}

Hosted by users:

Send Feedback Start
   0.000003
DB Connect
   0.000437
Lookup hash in DB
   0.001158
Get torrent details
   0.000404
Get torrent details, finished
   0.000820
Get authors
   0.000073
Parse bibtex
   0.000274
Write header
   0.000625
get stars
   0.000304
home tab
   0.006345
render right panel
   0.000009
render ads
   0.000032
fetch current hosters
   0.000667
Done