Caltech256 Image Dataset
Greg Griffin and Alex Holub and Pietro Perona

256_ObjectCategories.tar 1.18GB
Type: Dataset
Tags:

Bibtex:
@article{,
title= {Caltech256 Image Dataset},
journal= {},
author= {Greg Griffin and Alex Holub and Pietro Perona},
year= {2006},
url= {http://www.vision.caltech.edu/Image_Datasets/Caltech256/},
abstract= {==Overview
256 Object Categories + Clutter
At least 80 images per category
30608 images instead of 9144

==Caltech-101: Drawbacks
Smallest category size is 31 images:
Too easy?
    left-right aligned
    Rotation artifacts
    Soon will saturate performance

==Caltech-256 : New Features  
Smallest category size now 80 images
Harder
    Not left-right aligned
    No artifacts
    Performance is halved
    More categories
New and larger clutter category

==Collection Procedure
Similar to Caltech-101 (Li, Fergus, Perona)

Four sorters rate the images
1 good: a clear example
2 bad: confusing, occluded, cluttered, or artistic
3 not applicable: object category not present

92,652 Images from Google and Picsearch
    32.1% were rated good and kept

Some images borrowed from 29 of the largest Caltech-101 categories (green)

==Acknowledgements
Rob Fergus and Fei Fei Li, Pierre Moreels for code and procedures developed for the Caltech-101 image set
Marco Ranzato and Claudio Fanti for miscellaneous help
Sorters: Lis Fano, Nick Lo, Julie May, Weiyu Xu for making this image set possible with their hard work

Please site as: Griffin, G. Holub, AD. Perona, P. The Caltech 256. Caltech Technical Report. The technical report will be available shortly.},
keywords= {},
terms= {}
}


Send Feedback Start
   0.000010
DB Connect
   0.001122
Lookup hash in DB
   0.001268
Get torrent details
   0.000403
Get torrent details, finished
   0.000986
Get authors
   0.000002
Select authors
   0.000605
Parse bibtex
   0.000262
Write header
   0.000588
get stars
   0.000343
home tab
   0.000535
render right panel
   0.000007
render ads
   0.001389
fetch current hosters
   0.000938
Done