NIH Pancreas-CT Dataset
Holger R. Roth and Amal Farag and Evrim B. Turkbey and Le Lu and Jiamin Liu and Ronald M. Summers.

folder Pancreas-CT (164 files)
fileTCIA_pancreas_labels-02-05-2017/label0081.nii.gz 63.03kB
fileTCIA_pancreas_labels-02-05-2017/label0082.nii.gz 65.71kB
fileTCIA_pancreas_labels-02-05-2017/label0079.nii.gz 75.31kB
fileTCIA_pancreas_labels-02-05-2017/label0080.nii.gz 56.08kB
fileTCIA_pancreas_labels-02-05-2017/label0078.nii.gz 90.32kB
fileTCIA_pancreas_labels-02-05-2017/label0076.nii.gz 63.25kB
fileTCIA_pancreas_labels-02-05-2017/label0077.nii.gz 68.15kB
fileTCIA_pancreas_labels-02-05-2017/label0074.nii.gz 62.26kB
fileTCIA_pancreas_labels-02-05-2017/label0075.nii.gz 67.09kB
fileTCIA_pancreas_labels-02-05-2017/label0072.nii.gz 65.42kB
fileTCIA_pancreas_labels-02-05-2017/label0073.nii.gz 93.32kB
fileTCIA_pancreas_labels-02-05-2017/label0070.nii.gz 63.84kB
fileTCIA_pancreas_labels-02-05-2017/label0071.nii.gz 61.44kB
fileTCIA_pancreas_labels-02-05-2017/label0068.nii.gz 64.95kB
fileTCIA_pancreas_labels-02-05-2017/label0069.nii.gz 66.48kB
fileTCIA_pancreas_labels-02-05-2017/label0066.nii.gz 63.27kB
fileTCIA_pancreas_labels-02-05-2017/label0067.nii.gz 64.10kB
fileTCIA_pancreas_labels-02-05-2017/label0064.nii.gz 64.91kB
fileTCIA_pancreas_labels-02-05-2017/label0065.nii.gz 64.37kB
fileTCIA_pancreas_labels-02-05-2017/label0062.nii.gz 63.42kB
fileTCIA_pancreas_labels-02-05-2017/label0063.nii.gz 90.47kB
fileTCIA_pancreas_labels-02-05-2017/label0060.nii.gz 90.70kB
fileTCIA_pancreas_labels-02-05-2017/label0061.nii.gz 72.53kB
fileTCIA_pancreas_labels-02-05-2017/label0058.nii.gz 94.77kB
fileTCIA_pancreas_labels-02-05-2017/label0059.nii.gz 59.53kB
fileTCIA_pancreas_labels-02-05-2017/label0056.nii.gz 64.68kB
fileTCIA_pancreas_labels-02-05-2017/label0057.nii.gz 69.20kB
fileTCIA_pancreas_labels-02-05-2017/label0054.nii.gz 66.13kB
fileTCIA_pancreas_labels-02-05-2017/label0055.nii.gz 63.24kB
fileTCIA_pancreas_labels-02-05-2017/label0052.nii.gz 66.64kB
fileTCIA_pancreas_labels-02-05-2017/label0053.nii.gz 90.80kB
fileTCIA_pancreas_labels-02-05-2017/label0050.nii.gz 88.85kB
fileTCIA_pancreas_labels-02-05-2017/label0051.nii.gz 61.77kB
fileTCIA_pancreas_labels-02-05-2017/label0049.nii.gz 67.61kB
fileTCIA_pancreas_labels-02-05-2017/label0047.nii.gz 59.72kB
fileTCIA_pancreas_labels-02-05-2017/label0048.nii.gz 61.84kB
fileTCIA_pancreas_labels-02-05-2017/label0046.nii.gz 61.53kB
fileTCIA_pancreas_labels-02-05-2017/label0044.nii.gz 141.52kB
fileTCIA_pancreas_labels-02-05-2017/label0045.nii.gz 64.38kB
fileTCIA_pancreas_labels-02-05-2017/label0043.nii.gz 64.13kB
fileTCIA_pancreas_labels-02-05-2017/label0041.nii.gz 70.88kB
fileTCIA_pancreas_labels-02-05-2017/label0042.nii.gz 90.02kB
fileTCIA_pancreas_labels-02-05-2017/label0040.nii.gz 74.55kB
fileTCIA_pancreas_labels-02-05-2017/label0038.nii.gz 64.25kB
fileTCIA_pancreas_labels-02-05-2017/label0039.nii.gz 60.76kB
fileTCIA_pancreas_labels-02-05-2017/label0037.nii.gz 62.14kB
fileTCIA_pancreas_labels-02-05-2017/label0035.nii.gz 67.93kB
fileTCIA_pancreas_labels-02-05-2017/label0036.nii.gz 68.26kB
fileTCIA_pancreas_labels-02-05-2017/label0034.nii.gz 64.43kB
Too many files! Click here to view them all.
Type: Dataset
Tags:

Bibtex:
@article{,
title= {NIH Pancreas-CT Dataset},
keywords= {},
journal= {},
author= {Holger R. Roth and Amal Farag and Evrim B. Turkbey and Le Lu and Jiamin Liu and Ronald M. Summers. },
year= {},
url= {http://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU},
license= {Creative Commons Attribution 3.0 Unported License},
abstract= {### Summary

The National Institutes of Health Clinical Center performed 82 abdominal contrast enhanced 3D CT scans (~70 seconds after intravenous contrast injection in portal-venous) from 53 male and 27 female subjects.  Seventeen of the subjects are healthy kidney donors scanned prior to nephrectomy.  The remaining 65 patients were selected by a radiologist from patients who neither had major abdominal pathologies nor pancreatic cancer lesions.  Subjects' ages range from 18 to 76 years with a mean age of 46.8 ± 16.7. The CT scans have resolutions of 512x512 pixels with varying pixel sizes and slice thickness between 1.5 − 2.5 mm, acquired on Philips and Siemens MDCT scanners (120 kVp tube voltage).

A medical student manually performed slice-by-slice segmentations of the pancreas as ground-truth and these were verified/modified by an experienced radiologist.

The images were processed into nii files using the following script:

```
for i in `ls . | grep PAN`; do 
   echo $i; 
   dcm2niix -vox 1 -z y -o ./data/ -m y -s y -f %n $i
done
```

### Citation

Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, Summers RM. DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 556–564, 2015. 

### Examples

![](https://i.imgur.com/4aZNgw6.gifv)

![](https://i.imgur.com/kfhhH7x.png)

![](https://i.imgur.com/kGbz9hl.png)

},
superseded= {},
terms= {}
}


Send Feedback Start
   0.000005
DB Connect
   0.000430
Lookup hash in DB
   0.000670
Get torrent details
   0.000669
Get torrent details, finished
   0.000661
Get authors
   0.000089
Parse bibtex
   0.001010
Write header
   0.000819
get stars
   0.000587
home tab
   0.133787
render right panel
   0.000049
render ads
   0.000143
fetch current hosters
   0.001227
Done