Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation

amos22.zip 24.23GB
Type: Dataset

Bibtex:
@article{,
title= {Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation},
keywords= {computed tomography},
author= {},
abstract= {AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. 


https://zenodo.org/record/7155725},
terms= {},
license= {https://creativecommons.org/licenses/by/4.0/legalcode},
superseded= {},
url= {https://amos22.grand-challenge.org/}
}


Send Feedback Start
   0.000007
DB Connect
   0.000580
Lookup hash in DB
   0.000679
Get torrent details
   0.000204
Get torrent details, finished
   0.000432
Get authors
   0.000002
Select authors
   0.000244
Parse bibtex
   0.000082
Write header
   0.000290
get stars
   0.000172
home tab
   0.000204
render right panel
   0.000004
render ads
   0.000432
fetch current hosters
   0.000385
Done