[Coursera] Mining Massive Datasets (Stanford University) (mmds)
Stanford University

folder mmds-003 (432 files)
file01_Week_1_Materials/01_Distributed_File_Systems_15-50.mp4 28.90MB
file01_Week_1_Materials/01_Distributed_File_Systems_15-50.pdf 1.67MB
file01_Week_1_Materials/01_Distributed_File_Systems_15-50.srt 24.76kB
file01_Week_1_Materials/01_Distributed_File_Systems_15-50.txt 15.00kB
file01_Week_1_Materials/02_The_MapReduce_Computational_Model_22-04.mp4 37.39MB
file01_Week_1_Materials/02_The_MapReduce_Computational_Model_22-04.pdf 1.34MB
file01_Week_1_Materials/02_The_MapReduce_Computational_Model_22-04.srt 30.47kB
file01_Week_1_Materials/02_The_MapReduce_Computational_Model_22-04.txt 18.61kB
file01_Week_1_Materials/03_Scheduling_and_Data_Flow_12-43.mp4 21.13MB
file01_Week_1_Materials/03_Scheduling_and_Data_Flow_12-43.pdf 844.73kB
file01_Week_1_Materials/03_Scheduling_and_Data_Flow_12-43.srt 17.49kB
file01_Week_1_Materials/03_Scheduling_and_Data_Flow_12-43.txt 10.92kB
file01_Week_1_Materials/04_Combiners_and_Partition_Functions_12-17_Advanced.mp4 20.04MB
file01_Week_1_Materials/04_Combiners_and_Partition_Functions_12-17_Advanced.pdf 1.03MB
file01_Week_1_Materials/04_Combiners_and_Partition_Functions_12-17_Advanced.srt 15.63kB
file01_Week_1_Materials/04_Combiners_and_Partition_Functions_12-17_Advanced.txt 9.69kB
file01_Week_1_Materials/05_Link_Analysis_and_PageRank_9-39.mp4 15.39MB
file01_Week_1_Materials/05_Link_Analysis_and_PageRank_9-39.pdf 1.75MB
file01_Week_1_Materials/05_Link_Analysis_and_PageRank_9-39.srt 15.63kB
file01_Week_1_Materials/05_Link_Analysis_and_PageRank_9-39.txt 9.58kB
file01_Week_1_Materials/06_PageRank-_The_Flow_Formulation_9-16.mp4 14.50MB
file01_Week_1_Materials/06_PageRank-_The_Flow_Formulation_9-16.pdf 796.60kB
file01_Week_1_Materials/06_PageRank-_The_Flow_Formulation_9-16.srt 14.32kB
file01_Week_1_Materials/06_PageRank-_The_Flow_Formulation_9-16.txt 8.65kB
file01_Week_1_Materials/07_PageRank-_The_Matrix_Formulation_8-02.mp4 13.21MB
file01_Week_1_Materials/07_PageRank-_The_Matrix_Formulation_8-02.pdf 344.54kB
file01_Week_1_Materials/07_PageRank-_The_Matrix_Formulation_8-02.srt 11.60kB
file01_Week_1_Materials/07_PageRank-_The_Matrix_Formulation_8-02.txt 7.13kB
file01_Week_1_Materials/08_PageRank-_Power_Iteration_10-34.mp4 17.02MB
file01_Week_1_Materials/08_PageRank-_Power_Iteration_10-34.pdf 396.37kB
file01_Week_1_Materials/08_PageRank-_Power_Iteration_10-34.srt 15.04kB
file01_Week_1_Materials/08_PageRank-_Power_Iteration_10-34.txt 9.48kB
file01_Week_1_Materials/09_PageRank-_The_Google_Formulation_12-08.mp4 19.31MB
file01_Week_1_Materials/09_PageRank-_The_Google_Formulation_12-08.pdf 912.43kB
file01_Week_1_Materials/09_PageRank-_The_Google_Formulation_12-08.srt 17.87kB
file01_Week_1_Materials/09_PageRank-_The_Google_Formulation_12-08.txt 11.33kB
file01_Week_1_Materials/10_Why_Teleports_Solve_the_Problem_12-26.mp4 19.58MB
file01_Week_1_Materials/10_Why_Teleports_Solve_the_Problem_12-26.pdf 543.03kB
file01_Week_1_Materials/10_Why_Teleports_Solve_the_Problem_12-26.srt 17.43kB
file01_Week_1_Materials/10_Why_Teleports_Solve_the_Problem_12-26.txt 11.07kB
file01_Week_1_Materials/11_How_we_Really_Compute_PageRank_13-49.mp4 21.03MB
file01_Week_1_Materials/11_How_we_Really_Compute_PageRank_13-49.pdf 1.01MB
file01_Week_1_Materials/11_How_we_Really_Compute_PageRank_13-49.srt 20.64kB
file01_Week_1_Materials/11_How_we_Really_Compute_PageRank_13-49.txt 12.81kB
file02_Week_2_Materials/01_Finding_Similar_Sets_13-37.mp4 21.17MB
file02_Week_2_Materials/01_Finding_Similar_Sets_13-37.pdf 574.39kB
file02_Week_2_Materials/01_Finding_Similar_Sets_13-37.srt 18.95kB
file02_Week_2_Materials/01_Finding_Similar_Sets_13-37.txt 11.92kB
file02_Week_2_Materials/02_Minhashing_25-18.mp4 43.26MB
Too many files! Click here to view them all.
Type: Course
Tags: Coursera, mmds

Bibtex:
@article{,
    title = {[Coursera] Mining Massive Datasets (Stanford University) (mmds)},
    author = {Stanford University}
    }

Send Feedback Start
   0.000005
DB Connect
   0.000578
Lookup hash in DB
   0.000687
Get torrent details
   0.000673
Get torrent details, finished
   0.000753
Get authors
   0.000030
Parse bibtex
   0.000219
Write header
   0.000621
get stars
   0.000641
home tab
   0.002202
render right panel
   0.000014
render ads
   0.000052
fetch current hosters
   0.000944
Done