[Coursera] Natural Language Processing (Dan Jurafsky and Chris Manning)
Dan Jurafsky and Chris Manning

Info hash9ad3c282ff6c4137ed8b073d884ea3d72c2e4cd1
Last mirror activity6d,19:58:51 ago
Size1.18GB (1,176,932,543 bytes)
Added2020-06-08 18:24:26
Views973
Hits10230
ID4528
Typemulti
Downloaded25925 time(s)
Uploaded by gravatar.com icon for user joecohen
FolderNatural Language Processing
Num files102 files
File list [Hide list]
1 - 1 - Course Introduction (14_11).mp4 12.85MB
10 - 1 - What is Relation Extraction_ (9_47).mp4 10.68MB
10 - 2 - Using Patterns to Extract Relations (6_17).mp4 6.37MB
10 - 3 - Supervised Relation Extraction (10_51).mp4 10.81MB
10 - 4 - Semi-Supervised and Unsupervised Relation Extraction (9_53).mp4 10.55MB
11 - 1 - The Maximum Entropy Model Presentation (12_14).mp4 18.12MB
11 - 2 - Feature Overlap_Feature Interaction (12_51).mp4 13.25MB
11 - 3 - Conditional Maxent Models for Classification (4_11).mp4 5.02MB
11 - 4 - Smoothing_Regularization_Priors for Maxent Models (29_24).mp4 30.19MB
12 - 1 - An Intro to Parts of Speech and POS Tagging (13_19).mp4 12.46MB
12 - 2 - Some Methods and Results on Sequence Models for POS Tagging (13_04).mp4 13.44MB
13 - 1 - Syntactic Structure_ Constituency vs Dependency (8_46).mp4 9.40MB
13 - 2 - Empirical_Data-Driven Approach to Parsing (7_11).mp4 7.59MB
13 - 3 - The Exponential Problem in Parsing (14_30).mp4 15.59MB
14 - 1 - Instructor Chat (9_02).mp4 24.93MB
15 - 1 - CFGs and PCFGs (15_29).mp4 17.45MB
15 - 2 - Grammar Transforms (12_05).mp4 12.63MB
15 - 3 - CKY Parsing (23_25).mp4 27.45MB
15 - 4 - CKY Example (21_52).mp4 24.58MB
15 - 5 - Constituency Parser Evaluation (9_45).mp4 11.18MB
16 - 1 - Lexicalization of PCFGs (7_03).mp4 7.47MB
16 - 2 - Charniak_'s Model (18_23).mp4 19.88MB
16 - 3 - PCFG Independence Assumptions (9_44).mp4 10.31MB
16 - 4 - The Return of Unlexicalized PCFGs (20_53).mp4 22.25MB
16 - 5 - Latent Variable PCFGs (12_07).mp4 13.16MB
17 - 1 - Dependency Parsing Introduction (10_25).mp4 11.69MB
17 - 2 - Greedy Transition-Based Parsing (31_05).mp4 32.88MB
17 - 3 - Dependencies Encode Relational Structure (7_20).mp4 7.59MB
18 - 1 - Introduction to Information Retrieval (9_16).mp4 9.50MB
18 - 2 - Term-Document Incidence Matrices (8_59).mp4 9.46MB
18 - 3 - The Inverted Index (10_42).mp4 11.23MB
18 - 4 - Query Processing with the Inverted Index (6_43).mp4 7.07MB
18 - 5 - Phrase Queries and Positional Indexes (19_45).mp4 21.60MB
19 - 1 - Introducing Ranked Retrieval (4_27).mp4 4.80MB
19 - 2 - Scoring with the Jaccard Coefficient (5_06).mp4 5.66MB
19 - 3 - Term Frequency Weighting (5_59).mp4 6.67MB
19 - 4 - Inverse Document Frequency Weighting (10_16).mp4 11.66MB
19 - 5 - TF-IDF Weighting (3_42).mp4 4.30MB
19 - 6 - The Vector Space Model (16_22).mp4 17.76MB
19 - 7 - Calculating TF-IDF Cosine Scores (12_47).mp4 13.88MB
19 - 8 - Evaluating Search Engines (9_02).mp4 9.24MB
2 - 1 - Regular Expressions (11_25).mp4 11.37MB
2 - 2 - Regular Expressions in Practical NLP (6_04).mp4 8.35MB
2 - 3 - Word Tokenization (14_26).mp4 13.07MB
2 - 4 - Word Normalization and Stemming (11_47).mp4 10.57MB
2 - 5 - Sentence Segmentation (5_31).mp4 5.21MB
20 - 1 - Word Senses and Word Relations (11_50).mp4 15.62MB
20 - 2 - WordNet and Other Online Thesauri (6_23).mp4 9.17MB
20 - 3 - Word Similarity and Thesaurus Methods (16_17).mp4 21.22MB
20 - 4 - Word Similarity_ Distributional Similarity I (13_14).mp4 15.76MB
20 - 5 - Word Similarity_ Distributional Similarity II (8_15).mp4 9.92MB
21 - 1 - What is Question Answering_ (7_28).mp4 9.32MB
21 - 2 - Answer Types and Query Formulation (8_47).mp4 10.61MB
21 - 3 - Passage Retrieval and Answer Extraction (6_38).mp4 8.05MB
21 - 4 - Using Knowledge in QA (4_25).mp4 5.53MB
21 - 5 - Advanced_ Answering Complex Questions (4_52).mp4 6.47MB
22 - 1 - Introduction to Summarization.mp4 6.31MB
22 - 2 - Generating Snippets.mp4 10.08MB
22 - 3 - Evaluating Summaries_ ROUGE.mp4 6.85MB
22 - 4 - Summarizing Multiple Documents.mp4 14.05MB
23 - 1 - Instructor Chat II (5_23).mp4 19.53MB
3 - 1 - Defining Minimum Edit Distance (7_04).mp4 6.92MB
3 - 2 - Computing Minimum Edit Distance (5_54).mp4 5.65MB
3 - 3 - Backtrace for Computing Alignments (5_55).mp4 5.80MB
3 - 4 - Weighted Minimum Edit Distance (2_47).mp4 2.97MB
3 - 5 - Minimum Edit Distance in Computational Biology (9_29).mp4 9.38MB
4 - 1 - Introduction to N-grams (8_41).mp4 8.01MB
4 - 2 - Estimating N-gram Probabilities (9_38).mp4 9.94MB
4 - 3 - Evaluation and Perplexity (11_09).mp4 10.06MB
4 - 4 - Generalization and Zeros (5_15).mp4 4.90MB
4 - 5 - Smoothing_ Add-One (6_30).mp4 6.34MB
4 - 6 - Interpolation (10_25).mp4 9.83MB
4 - 7 - Good-Turing Smoothing (15_35).mp4 14.09MB
4 - 8 - Kneser-Ney Smoothing (8_59).mp4 8.85MB
5 - 1 - The Spelling Correction Task (5_39).mp4 5.08MB
5 - 2 - The Noisy Channel Model of Spelling (19_30).mp4 18.65MB
5 - 3 - Real-Word Spelling Correction (9_19).mp4 8.98MB
5 - 4 - State of the Art Systems (7_10).mp4 6.93MB
6 - 1 - What is Text Classification_ (8_12).mp4 8.08MB
6 - 2 - Naive Bayes (3_19).mp4 3.41MB
6 - 3 - Formalizing the Naive Bayes Classifier (9_28).mp4 8.58MB
6 - 4 - Naive Bayes_ Learning (5_22).mp4 6.49MB
6 - 5 - Naive Bayes_ Relationship to Language Modeling (4_35).mp4 4.29MB
6 - 6 - Multinomial Naive Bayes_ A Worked Example (8_58).mp4 11.94MB
6 - 7 - Precision, Recall, and the F measure (16_16).mp4 16.48MB
6 - 8 - Text Classification_ Evaluation (7_17).mp4 12.11MB
6 - 9 - Practical Issues in Text Classification (5_56).mp4 6.88MB
7 - 1 - What is Sentiment Analysis_ (7_17).mp4 10.02MB
7 - 2 - Sentiment Analysis_ A baseline algorithm (13_27).mp4 13.82MB
7 - 3 - Sentiment Lexicons (8_37).mp4 11.09MB
7 - 4 - Learning Sentiment Lexicons (14_45).mp4 19.56MB
7 - 5 - Other Sentiment Tasks (11_01).mp4 15.23MB
8 - 1 - Generative vs. Discriminative Models (7_49).mp4 8.31MB
8 - 2 - Making features from text for discriminative NLP models (18_11).mp4 17.47MB
8 - 3 - Feature-Based Linear Classifiers (13_34).mp4 14.11MB
8 - 4 - Building a Maxent Model_ The Nuts and Bolts (8_04).mp4 8.17MB
8 - 5 - Generative vs. Discriminative models_ The problem of overcounting evidence (12_15).mp4 12.81MB
8 - 6 - Maximizing the Likelihood (10_29).mp4 10.31MB
9 - 1 - Introduction to Information Extraction (9_18).mp4 9.85MB
9 - 2 - Evaluation of Named Entity Recognition (6_34).mp4 7.08MB
9 - 3 - Sequence Models for Named Entity Recognition (15_05).mp4 14.83MB
9 - 4 - Maximum Entropy Sequence Models (13_01).mp4 13.95MB
Mirrors14 complete, 0 downloading = 14 mirror(s) total [Log in to see full list]


Send Feedback Start
   0.000003
DB Connect
   0.000312
Lookup hash in DB
   0.000586
Get torrent details
   0.000644
Get torrent details, finished
   0.000578
Get authors
   0.000034
Parse bibtex
   0.000142
Write header
   0.000489
get stars
   0.000389
target tab
   0.000012
Request peers
   0.001020
Write table
   0.007874
geoloc peers
   0.028776
render right panel
   0.000014
render ads
   0.000041
fetch current hosters
   0.001428
Done