driving__frames_cleanpass_webp.tar
Nikolaus Mayer and Eddy Ilg and Philip Hausser and Philipp Fischer and Daniel Cremers and Alexey Dosovitskiy and Thomas Brox

driving__frames_cleanpass_webp.tar 1.55GB
Type: Dataset
Tags: Dataset, disparity, scene flow, synthetic
Abstract:

This torrent contains the "Clean pass" images (WebP format) for the "Driving" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. (https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html).



URL: https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
License: No license specified, the work may be protected by copyright.

Terms: https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html#tou



Bibtex:
@article{,
title= {driving__frames_cleanpass_webp.tar},
keywords= {Dataset, synthetic, disparity, scene flow},
journal= {},
author= {Nikolaus Mayer and Eddy Ilg and Philip Hausser and Philipp Fischer and Daniel Cremers and Alexey Dosovitskiy and Thomas Brox},
year= {},
url= {https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html},
license= {},
abstract= {This torrent contains the "Clean pass" images (WebP format) for the "Driving" dataset from the CVPR 2016 paper "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" by Mayer et al. (https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html).},
superseded= {},
terms= {https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html#tou}
}


Send Feedback Start
   0.000005
DB Connect
   0.000571
Lookup hash in DB
   0.011132
Get torrent details
   0.004399
Get torrent details, finished
   0.001000
Get authors
   0.000109
Parse bibtex
   0.000913
Write header
   0.002292
get stars
   0.005985
home tab
   0.008360
render right panel
   0.000041
render ads
   0.000093
fetch current hosters
   0.021602
Done