Folio Leaf Dataset.rar 972.47MB
Type: Dataset
Tags:

Bibtex:
@article{,
title= {UCI Folio Leaf Dataset},
keywords= {},
journal= {},
author= {Trishen Munisami and Mahess Ramsurn and Somveer Kishnah and Sameerchand Pudaruth},
year= {2015},
url= {https://archive.ics.uci.edu/ml/datasets/Folio},
license= {},
abstract= {Source:
The leaves were taken from plants in the farm of the University of Mauritius and nearby locations. 

Donors: 
Trishen Munisami 
trishen.munisami '@' gmail.com 

Mahess Ramsurn 
ramsurn.mahess '@' umail.uom.ac.mu 

Somveer Kishnah 
s.kishnah '@' uom.ac.mu 

Sameerchand Pudaruth 
sameerchand.pudaruth '@' gmail.com


Data Set Information:
- The leaves were placed on a white background and then photographed. 
- The pictures were taken in broad daylight to ensure optimum light intensity.

Attribute Information:
List of plant species:
1. Beaumier du perou
2. Eggplant
3. Fruitcitere
4. Guava
5. Hibiscus
6. Betel
7. Rose
8. Chrysanthemum
9. Ficus
10. Duranta gold
11. Ashanti blood
12. Bitter Orange
13. Coeur Demoiselle
14. Jackfruit
15. Mulberry Leaf
16. Pimento
17. Pomme Jacquot
18. Star Apple
19. Barbados Cherry
20. Sweet Olive
21. Croton
22. Thevetia
23. Vieux Garcon
24. Chocolate tree
25. Carricature plant
26. Coffee
27. Ketembilla
28. Chinese guava
29. Lychee
30. Geranium
31. Sweet potato
32. Papaya

Relevant Papers:
Munisami, T., Ramsurn, M., Kishnah, S. and Pudaruth, S., 2015. Plant leaf recognition using shape features and colour histogram with k-nearest neighbour classifiers. Procedia Computer Science (Elsevier) Journal. 58, pp. 740-747.

Citation Request:
Munisami, T., Ramsurn, M., Kishnah, S. and Pudaruth, S., 2015. Plant leaf recognition using shape features and colour histogram with k-nearest neighbour classifiers. Procedia Computer Science (Elsevier) Journal. 58, pp. 740-747.},
tos= {},
superseded= {},
terms= {}
}


Send Feedback Start
   0.000008
DB Connect
   0.001100
Lookup hash in DB
   0.004329
Get torrent details
   0.000599
Get torrent details, finished
   0.001148
Get authors
   0.000002
Select authors
   0.000765
Parse bibtex
   0.000562
Write header
   0.000891
get stars
   0.000388
home tab
   0.000504
render right panel
   0.000008
render ads
   0.001454
fetch current hosters
   0.001003
Done