Breast Cancer Cell Segmentation
Elisa Drelie Gelasca and Jiyun Byun and Boguslaw Obara and B.S. Manjunath

folder BreastCancerCell_dataset (174 files)
fileytma10_010704_benign1.TIF 689.06kB
fileytma10_010704_benign1.TIF.xml 0.37kB
fileytma10_010704_benign1_ccd.tif 2.08MB
fileytma10_010704_benign2.TIF 689.06kB
fileytma10_010704_benign2.TIF.xml 0.37kB
fileytma10_010704_benign2_ccd.tif 2.08MB
fileytma10_010704_benign3.TIF 689.06kB
fileytma10_010704_benign3.TIF.xml 0.37kB
fileytma10_010704_benign3_ccd.tif 2.08MB
fileytma10_010704_malignant1.TIF 689.06kB
fileytma10_010704_malignant1.TIF.xml 0.38kB
fileytma10_010704_malignant1_ccd.tif 2.08MB
fileytma10_010704_malignant2.TIF 689.06kB
fileytma10_010704_malignant2.TIF.xml 0.38kB
fileytma10_010704_malignant2_ccd.tif 2.08MB
fileytma10_010704_malignant3.TIF 689.06kB
fileytma10_010704_malignant3.TIF.xml 0.38kB
fileytma10_010704_malignant3_ccd.tif 2.08MB
fileytma12_010804_benign1.TIF 689.06kB
fileytma12_010804_benign1.TIF.xml 0.37kB
fileytma12_010804_benign1_ccd.tif 2.07MB
fileytma12_010804_benign2.TIF 689.06kB
fileytma12_010804_benign2.TIF.xml 0.37kB
fileytma12_010804_benign2_ccd.tif 2.07MB
fileytma12_010804_benign3.TIF 689.06kB
fileytma12_010804_benign3.TIF.xml 0.37kB
fileytma12_010804_benign3_ccd.tif 2.07MB
fileytma12_010804_malignant1.TIF 689.06kB
fileytma12_010804_malignant1.TIF.xml 0.38kB
fileytma12_010804_malignant1_ccd.tif 2.07MB
fileytma12_010804_malignant2.TIF 689.06kB
fileytma12_010804_malignant2.TIF.xml 0.38kB
fileytma12_010804_malignant2_ccd.tif 2.06MB
fileytma12_010804_malignant3.TIF 689.06kB
fileytma12_010804_malignant3.TIF.xml 0.38kB
fileytma12_010804_malignant3_ccd.tif 2.05MB
fileytma23_022103_benign1.TIF 689.06kB
fileytma23_022103_benign1.TIF.xml 0.37kB
fileytma23_022103_benign1_ccd.tif 2.07MB
fileytma23_022103_benign2.TIF 689.06kB
fileytma23_022103_benign2.TIF.xml 0.37kB
fileytma23_022103_benign2_ccd.tif 2.07MB
fileytma23_022103_benign3.TIF 689.06kB
fileytma23_022103_benign3.TIF.xml 0.37kB
fileytma23_022103_benign3_ccd.tif 2.02MB
fileytma23_022103_malignant1.TIF 689.06kB
fileytma23_022103_malignant1.TIF.xml 0.38kB
fileytma23_022103_malignant1_ccd.tif 2.08MB
fileytma23_022103_malignant2.TIF 689.06kB
Too many files! Click here to view them all.
Type: Dataset
Tags:

Bibtex:
@article{,
title= {Breast Cancer Cell Segmentation},
keywords= {},
author= {Elisa Drelie Gelasca and Jiyun Byun and Boguslaw Obara and B.S. Manjunath},
abstract= {There are about 58 H&E stained histopathology images used in breast cancer cell detection with associated ground truth data available. Routine histology uses the stain combination of hematoxylin and eosin, commonly referred to as H&E. These images are stained since most cells are essentially transparent, with little or no intrinsic pigment. Certain special stains, which bind selectively to particular components, are be used to identify biological structures such as cells. In those images, the challenging problem is cell segmentation for subsequent classification in benign and malignant cells. The ground truth have been obtained for one image containing benign cells.


| Image: |Ground Truth: |
|---|---|
| ![](https://i.imgur.com/haa5X8O.png) | ![](https://i.imgur.com/gqBikTa.png) |






All images:

![](https://i.imgur.com/QM22bG2.png)},
terms= {},
license= {},
superseded= {},
url= {http://bioimage.ucsb.edu/research/bio-segmentation}
}

Hosted by users:

Send Feedback Start
   0.000006
DB Connect
   0.000578
Lookup hash in DB
   0.000912
Get torrent details
   0.000803
Get torrent details, finished
   0.000798
Get authors
   0.000046
Parse bibtex
   0.000418
Write header
   0.000735
get stars
   0.000705
home tab
   0.001791
render right panel
   0.000036
render ads
   0.000073
fetch current hosters
   0.000939
Done