Genetically Enhanced Feature Selection of Discriminative Planetary Crater Image Features
Liu, Siyi and Cohen, Joseph Paul and Ding, Wei

geneticcrater.pdf 580.96kB
Type: Paper
Tags: machine learning, crater detection, bayesian classifier, genetic algorithms

Bibtex:
@inproceedings{Cohen:2011:GEF:2188812.2188820,
 author = {Cohen, Joseph Paul and Liu, Siyi and Ding, Wei},
 title = {Genetically Enhanced Feature Selection of Discriminative Planetary Crater Image Features},
 booktitle = {Proceedings of the 24th International Conference on Advances in Artificial Intelligence},
 series = {AI'11},
 year = {2011},
 isbn = {978-3-642-25831-2},
 location = {Perth, Australia},
 pages = {61--71},
 numpages = {11},
 url = {http://dx.doi.org/10.1007/978-3-642-25832-9_7},
 doi = {10.1007/978-3-642-25832-9_7},
 acmid = {2188820},
 publisher = {Springer-Verlag},
 address = {Berlin, Heidelberg},
 keywords = {bayesian classifier, crater detection, genetic algorithms, machine learning},
	abstract = {Using gray-scale texture features has recently become a new trend in supervised machine learning crater detection algorithms. To provide better classification of craters in planetary images, feature subset selection is used to reduce irrelevant and redundant features. Feature selection is known to be NP-hard. To provide an efficient suboptimal solution, three genetic algorithms are proposed to use greedy selection, weighted random selection, and simulated annealing to distinguish discriminate features from indiscriminate features. A significant increase in the classification ability of a Bayesian classifier in crater detection using image texture features.}
}

Send Feedback Start
   0.000005
DB Connect
   0.000506
Lookup hash in DB
   0.001177
Get torrent details
   0.001133
Get torrent details, finished
   0.000603
Get authors
   0.000005
Select authors
   0.000563
Parse bibtex
   0.000600
Write header
   0.000509
get stars
   0.000334
home tab
   0.000875
render right panel
   0.000010
render ads
   0.000039
fetch current hosters
   0.004946
Done