Breast Ultrasound Images Dataset (Dataset BUSI)

Dataset_BUSI.zip 205.87MB
Type: Dataset
Tags:

Bibtex:
@article{,
title= {Breast Ultrasound Images Dataset (Dataset BUSI)},
keywords= {},
author= {},
abstract= {The data collected at baseline include breast ultrasound images among women in ages between 25 and 75 years old. This data was collected in 2018. The number of patients is 600 female patients. The dataset consists of 780 images with an average image size of 500*500 pixels. The images are in PNG format. The ground truth images are presented with original images. The images are categorized into three classes, which are normal, benign, and malignant.


If you use this dataset, please cite:
Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data in Brief. 2020 Feb;28:104863. DOI: 10.1016/j.dib.2019.104863.


| Subject area               | Medicine and Dentistry                                                                                                                                                             |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| More specific subject area | Radiology and Imaging                                                                                                                                                              |
| Type of data               | Images and mask images                                                                                                                                                             |
| How data was acquired      | LOGIQ E9 ultrasound and LOGIQ E9 Agile ultrasound system                                                                                                                           |
| Data format                | PNG                                                                                                                                                                                |
| Experimental factors       | All images are classified as normal, benign and malignant                                                                                                                          |
| Experimental features      | When medical images are used for training deep learning models, they provide fast and accurate results in classification, detection, and segmentation of breast cancer.            |
| Data source location       | Baheya Hospital for Early Detection & Treatment of Women's Cancer, Cairo, Egypt.                                                                                                   |
| Data accessibility         | https://scholar.cu.edu.eg/?q=afahmy/pages/dataset                                                                                                                                  |
| Related research article   | 1. Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled and Aly Fahmy, Deep Learning Approaches for Data Augmentation and Classification of Breast Masses using Ultrasound Images [1] |



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906728/


https://i.imgur.com/WV1Tfb7.png},
terms= {},
license= {},
superseded= {},
url= {https://scholar.cu.edu.eg/?q=afahmy/pages/dataset}
}


Send Feedback Start
   0.000003
DB Connect
   0.000494
Lookup hash in DB
   0.000560
Get torrent details
   0.000558
Get torrent details, finished
   0.000523
Get authors
   0.000004
Select authors
   0.000575
Parse bibtex
   0.000496
Write header
   0.000465
get stars
   0.000361
home tab
   0.000474
render right panel
   0.000025
render ads
   0.000060
fetch current hosters
   0.003813
Done