The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight
Antonini, Amado and Guerra, Winter and Murali, Varun and Sayre-McCord, Thomas and Karaman, Sertac

folder BlackbirdDatasetData (747 files)
filehalfMoon/yawConstant/maxSpeed1p0/images/Camera_L_Large_Apartment_Night_Near_Column.tar 6.57GB
filehalfMoon/yawConstant/maxSpeed1p0/images/Camera_D_Small_Apartment.tar 8.95GB
filehalfMoon/yawConstant/maxSpeed1p0/images/Camera_D_Large_Apartment_Night_Near_Column.tar 9.00GB
filedice/yawForward/maxSpeed3p0/images/Camera_R_Ancient_Asia_Museum_Room.tar 6.65GB
filedice/yawForward/maxSpeed3p0/images/Camera_L_Ancient_Asia_Museum_Room.tar 6.65GB
filedice/yawForward/maxSpeed3p0/images/Camera_D_Ancient_Asia_Museum_Room.tar 7.26GB
filedice/yawForward/maxSpeed2p0/images/Camera_R_Ancient_Asia_Museum_Room.tar 5.10GB
filedice/yawForward/maxSpeed2p0/images/Camera_L_Ancient_Asia_Museum_Room.tar 5.11GB
filedice/yawForward/maxSpeed2p0/images/Camera_D_Ancient_Asia_Museum_Room.tar 5.78GB
filedice/yawForward/maxSpeed1p0/images/Camera_R_Ancient_Asia_Museum_Room.tar 6.26GB
filedice/yawForward/maxSpeed1p0/images/Camera_L_Ancient_Asia_Museum_Room.tar 6.26GB
filedice/yawForward/maxSpeed1p0/images/Camera_D_Ancient_Asia_Museum_Room.tar 7.50GB
filedice/yawConstant/maxSpeed4p0/images/Camera_R_Ancient_Asia_Museum_Room.tar 7.91GB
filedice/yawConstant/maxSpeed4p0/images/Camera_L_Ancient_Asia_Museum_Room.tar 7.91GB
filedice/yawConstant/maxSpeed4p0/images/Camera_D_Ancient_Asia_Museum_Room.tar 8.56GB
filedice/yawConstant/maxSpeed3p0/images/Camera_R_Ancient_Asia_Museum_Room.tar 7.77GB
filedice/yawConstant/maxSpeed3p0/images/Camera_L_Ancient_Asia_Museum_Room.tar 7.77GB
filedice/yawConstant/maxSpeed3p0/images/Camera_D_Ancient_Asia_Museum_Room.tar 8.13GB
filedice/yawConstant/maxSpeed2p0/images/Camera_R_Ancient_Asia_Museum_Room.tar 7.54GB
filedice/yawConstant/maxSpeed2p0/images/Camera_L_Ancient_Asia_Museum_Room.tar 7.53GB
filedice/yawConstant/maxSpeed2p0/images/Camera_D_Ancient_Asia_Museum_Room.tar 8.07GB
fileclover/yawForward/maxSpeed5p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 6.68GB
fileclover/yawForward/maxSpeed5p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 6.68GB
fileclover/yawForward/maxSpeed5p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 9.41GB
fileclover/yawForward/maxSpeed4p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 6.24GB
fileclover/yawForward/maxSpeed4p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 6.24GB
fileclover/yawForward/maxSpeed4p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 9.49GB
fileclover/yawForward/maxSpeed3p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 6.06GB
fileclover/yawForward/maxSpeed3p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 6.06GB
fileclover/yawForward/maxSpeed3p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 9.76GB
fileclover/yawForward/maxSpeed2p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 5.84GB
fileclover/yawForward/maxSpeed2p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 5.83GB
fileclover/yawForward/maxSpeed2p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 9.88GB
fileclover/yawForward/maxSpeed1p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 3.32GB
fileclover/yawForward/maxSpeed1p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 3.32GB
fileclover/yawForward/maxSpeed1p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 5.76GB
fileclover/yawForward/maxSpeed0p5/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 5.83GB
fileclover/yawForward/maxSpeed0p5/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 5.83GB
fileclover/yawForward/maxSpeed0p5/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 10.39GB
fileclover/yawConstant/maxSpeed6p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 8.97GB
fileclover/yawConstant/maxSpeed6p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 9.00GB
fileclover/yawConstant/maxSpeed6p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 11.04GB
fileclover/yawConstant/maxSpeed5p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 8.51GB
fileclover/yawConstant/maxSpeed5p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 8.53GB
fileclover/yawConstant/maxSpeed5p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 11.60GB
fileclover/yawConstant/maxSpeed4p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 8.20GB
fileclover/yawConstant/maxSpeed4p0/images/Camera_L_Large_Apartment_Night_Near_Couches.tar 8.23GB
fileclover/yawConstant/maxSpeed4p0/images/Camera_D_Large_Apartment_Night_Near_Couches.tar 12.09GB
fileclover/yawConstant/maxSpeed3p0/images/Camera_R_Large_Apartment_Night_Near_Couches.tar 8.01GB
Too many files! Click here to view them all.
Type: Dataset
Tags: Dataset, aggressive, drone racing, VIO, SLAM, perception, UAV

Bibtex:
@inproceedings{antonini2018blackbird,
title= {The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight},
author= {Antonini, Amado and Guerra, Winter and Murali, Varun and Sayre-McCord, Thomas and Karaman, Sertac},
booktitle= {2018 International Symposium on Experimental Robotics (ISER)},
year= {2018},
abstract= {The Blackbird unmanned aerial vehicle (UAV) dataset is a large-scale indoor dataset collected using a custom-built quadrotor platform for use in evaluation of agile perception. The dataset contains over 10 hours of flight data from 168 flights over 17 flight trajectories and 5 environments at velocities up to 8.0 m/s. Each flight includes sensor data from 120 Hz stereo and downward-facing photorealistic virtual cameras, 100 Hz IMU, 190 Hz motor speed sensors, and 360 Hz millimeter-accurate motion capture ground truth. Camera images for each flight were photorealistically rendered using FlightGoggles across a variety of environments to facilitate experimentation of perception algorithms. The dataset is available at http://blackbird-dataset.mit.edu.


# Citation

```
@article{antoniniIJRRblackbird,
  title ={The Blackbird UAV dataset},
  journal = {The International Journal of Robotics Research},
  author = {
    Antonini, Amado and 
    Guerra, Winter and 
    Murali, Varun and 
    Sayre-McCord, Thomas and 
    Karaman, Sertac},
  volume = {0},
  number = {0},
  pages = {0278364920908331},
  year = {0},
  doi = {10.1177/0278364920908331},
  URL = { https://doi.org/10.1177/0278364920908331 },
  eprint = { https://doi.org/10.1177/0278364920908331 }
}

@inproceedings{antonini2018blackbird,
  title={The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight},
  booktitle={2018 International Symposium on Experimental Robotics (ISER)},
  author={
    Antonini, Amado and 
    Guerra, Winter and 
    Murali, Varun and 
    Sayre-McCord, Thomas and 
    Karaman, Sertac},
  doi={10.1007/978-3-030-33950-0_12},
  URL={ https://doi.org/10.1007/978-3-030-33950-0_12 },  
  year={2018}
}
```

https://github.com/mit-aera/Blackbird-Dataset},
keywords= {Dataset, UAV, aggressive, drone racing, VIO, SLAM, perception},
terms= {Copyright 2018 Sertac Karaman
    
    Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.},
license= {MIT License},
superseded= {},
url= {http://blackbird-dataset.mit.edu}
}


Send Feedback Start
   0.000006
DB Connect
   0.000468
Lookup hash in DB
   0.000799
Get torrent details
   0.000836
Get torrent details, finished
   0.000643
Get authors
   0.000115
Parse bibtex
   0.001273
Write header
   0.000704
get stars
   0.000375
home tab
   0.031027
render right panel
   0.000015
render ads
   0.000050
fetch current hosters
   0.000714
Done