The GOOSE Dataset for Perception in Unstructured Environments
Mortimer, Peter and Hagmanns, Raphael and Granero, Miguel and Luettel, Thorsten and Petereit, Janko and Wuensche, Hans-Joachim

folder GOOSE (65046 files)
file2D_images/testing/images/test/2022-08-30_siegertsbrunn_feldwege/2022-08-30_siegertsbrunn_feldwege__0462_1661859202191354797_windshield_nir.png 409.67kB
file2D_images/testing/images/test/2022-08-30_siegertsbrunn_feldwege/2022-08-30_siegertsbrunn_feldwege__0461_1661858886133458576_windshield_vis.png 2.41MB
file2D_images/testing/images/test/2022-08-30_siegertsbrunn_feldwege/2022-08-30_siegertsbrunn_feldwege__0461_1661858886133458576_windshield_nir.png 253.27kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0176_1657203163644943943_windshield_vis.png 2.14MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0176_1657203163644943943_windshield_nir.png 766.03kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0175_1657203142946204627_windshield_vis.png 1.67MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0175_1657203142946204627_windshield_nir.png 697.50kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0174_1657203137946154247_windshield_vis.png 1.72MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0174_1657203137946154247_windshield_nir.png 644.28kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0173_1657203132846574286_windshield_vis.png 1.71MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0173_1657203132846574286_windshield_nir.png 637.37kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0172_1657203106247040914_windshield_vis.png 1.74MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0172_1657203106247040914_windshield_nir.png 662.48kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0171_1657203104147060182_windshield_vis.png 1.82MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0171_1657203104147060182_windshield_nir.png 679.78kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0170_1657203099747772465_windshield_vis.png 2.04MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0170_1657203099747772465_windshield_nir.png 796.37kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0169_1657203097047533865_windshield_vis.png 2.03MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0169_1657203097047533865_windshield_nir.png 791.16kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0168_1657203093248898176_windshield_vis.png 2.14MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0168_1657203093248898176_windshield_nir.png 776.07kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0167_1657203049450360602_windshield_vis.png 1.93MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0167_1657203049450360602_windshield_nir.png 754.58kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0166_1657203046750891485_windshield_vis.png 2.22MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0166_1657203046750891485_windshield_nir.png 772.65kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0165_1657203041449225258_windshield_vis.png 2.09MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0165_1657203041449225258_windshield_nir.png 796.71kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0164_1657203037150986421_windshield_vis.png 2.33MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0164_1657203037150986421_windshield_nir.png 784.93kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0163_1657203007251950906_windshield_vis.png 2.50MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0163_1657203007251950906_windshield_nir.png 800.78kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0162_1657203002251436465_windshield_vis.png 2.44MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0162_1657203002251436465_windshield_nir.png 776.86kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0161_1657202998751977158_windshield_vis.png 2.38MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0161_1657202998751977158_windshield_nir.png 787.53kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0160_1657202993352090435_windshield_vis.png 2.08MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0160_1657202993352090435_windshield_nir.png 789.40kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0159_1657202988251919286_windshield_vis.png 2.21MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0159_1657202988251919286_windshield_nir.png 812.21kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0158_1657202979352545694_windshield_vis.png 2.09MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0158_1657202979352545694_windshield_nir.png 800.02kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0157_1657202751960402504_windshield_vis.png 2.46MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0157_1657202751960402504_windshield_nir.png 787.04kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0156_1657202745762466581_windshield_vis.png 2.12MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0156_1657202745762466581_windshield_nir.png 736.67kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0155_1657202741162125645_windshield_vis.png 2.28MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0155_1657202741162125645_windshield_nir.png 750.57kB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0154_1657202737462348006_windshield_vis.png 2.33MB
file2D_images/testing/images/test/2022-07-07_campus_no_ptp/2022-07-07_campus_no_ptp__0154_1657202737462348006_windshield_nir.png 747.82kB
Too many files! Click here to view them all.
Type: Dataset
Tags: semantic segmentationtraversabilitynavigationpoint cloudrobot navigationautonomous systemscalibration targetcamera imagesclassification datasetscolor camerahigh grassimage segmentationLiDaR point cloudsLiDaR scansneural architecture searchontologiespoint cloud compressionpoint cloud datapoint cloud segmentationraw sensor dataRGB imagesrobot sensing systemsrobotic platformsegmentation modelsemantic segmentation modelssensor datasynchronizationterraintest splittypes of obstaclesunstructured environmentstraining3D point cloud

Bibtex:
@article{,
title= {The GOOSE Dataset for Perception in Unstructured Environments},
journal= {arXiv preprint arXiv:2310.16788},
author= {Mortimer, Peter and Hagmanns, Raphael and Granero, Miguel and Luettel, Thorsten and Petereit, Janko and Wuensche, Hans-Joachim},
year= {2023},
url= {https://goose-dataset.de/},
abstract= {The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. This framework also makes it possible to query data for specific weather conditions or sensor setups from a database in future. The dataset, pre-trained models for offroad perception, and additional documentation can be found at https://goose-dataset.de/.},
keywords= {training, semantic segmentation, traversability, navigation, point cloud, robot navigation, 3D point cloud, autonomous systems, calibration target, camera images, classification datasets, color camera, high grass, image segmentation, LiDaR point clouds, LiDaR scans, neural architecture search, ontologies, point cloud compression, point cloud data, point cloud segmentation, raw sensor data, RGB images, robot sensing systems, robotic platform, segmentation model, semantic segmentation models, sensor data, synchronization, terrain, test split, types of obstacles, unstructured environments},
terms= {},
license= {CC BY-SA: https://creativecommons.org/licenses/by-sa/4.0/},
superseded= {}
}


Send Feedback Start
   0.000002
DB Connect
   0.000301
Lookup hash in DB
   0.000818
Get torrent details
   0.000308
Get torrent details, finished
   0.000429
Get authors
   0.000054
Parse bibtex
   0.000100
Write header
   0.000386
get stars
   0.000252
home tab
   0.001451
render right panel
   0.000004
render ads
   0.000016
fetch current hosters
   0.000505
Done